Polynomial invariants of graphs on surfaces and virtual knots

نویسنده

  • Sergei Chmutov
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces

We define an invariant of welded virtual knots from each finite crossed module by considering crossed module invariants of ribbon knotted surfaces which are naturally associated with them. We elucidate that the invariants obtained are non-trivial by calculating explicit examples. We define welded virtual graphs and consider invariants of them defined in a similar way. 2000 Mathematics Subject C...

متن کامل

Virtual Knot Theory

This paper is an introduction to the subject of virtual knot theory, a generalization of classical knot theory that I discovered in 1996 [2]. This paper gives the basic definitions, some fundamental properties and a collection of examples. Subsequent papers will treat specific topics such as classical and quantum link invariants and Vassiliev invariants for virtual knots and links in more detai...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

On Polynomial Invariants of Virtual Links

The VA-polynomial proposed in the author’s earlier paper (Acta Appl. Math. 72 (2002), 295–309) for virtual knots and links is considered in this paper. One goal here is to refine the definition of this polynomial to the case of the ring Z in place of the field Q. Moreover, the approach in the paper mentioned makes it possible to recognize “long virtual knots” obtained from equivalent virtual kn...

متن کامل

QUATERNIONIC INVARIANTS of VIRTUAL KNOTS and LINKS

In this paper we define and give examples of a family of polynomial invariants of virtual knots and links. They arise by considering certain 2×2 matrices with entries in a possibly non-commutative ring, for example the quaternions. These polynomials are sufficiently powerful to distinguish the Kishino knot from any classical knot, including the unknot. The contents of the paper are as follows

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008